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ABSTRACT

A simple linear programming formulation is given for finding an 9Y~ball
,A

with largest radius contained in a polyhedral set defined by m linear

inequalities. The linear program also has m linear constraints similar to

those defining the set. It is shown that finding the largest ball is not much

more difficult than finding a feasible point. When the center of ball is

fixed, the largest radius is easily obtained as the smallest of m ratios.

The results can be extended to balls defined by other norms such as elliptic

* norms.
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SIGNIFICANCE AND EXPLANATION

Finding the largest ball or hypercube in a polyhedral set has many

applications in operations research. This work gives a simple linear

programming formulation for solving the problem. The effort needed to solve

the linear program is almost the same as that for finding a feasible point in

the given polyhedral set. Hence the result of this work can be considered

optimal.

The responsibility for the wording and views expressed in this descriptive

summary lies with MRC, and not with the author of this report.



FINDING THE LARGEST LP-BALL IN A POLYHEDRAL SET

Tzong-Huei Shiau

1. Introduction

We consider the problem of finding the largest tP-ball B(y,y;p) contained in a

polyhedral set F Rn, where

x= e a x < b. for i = 1,2,...,m}

0 i a9 e Rn, b. e R, the superscript T denotes matrix transposition and aTX is

therefore the inner product of ai and x. For y e Rn, y e R and 1 C p &, the

LP-ball with center y and radius Y is defined by

B(y,Y;p) : ly + Yz z iJZp C 1} where

( n i/p

( i1Lm~x H~i I "

B(y,Y;p) is an ordinary ball for p = 2. For p = , it is a hypercube. Intuitively

if F contains no interior points the largest ball will have y = 0, otherwise y > 0

(including the case y = + ). Since the tP-ball is convex, B(y,N;p) c F if and only

if F contains all the extreme points of B(y,y;p). In the case that p = +, B(y,y;p)

has 2n extreme p' ints,

y + yzk k = 1, n

where zk = , i Therefore the problem of finding the largest ball can be

formulated as

(2) max y subject to aT(y + yz k ) _ bi, i = 1. m, k = .

(y,Y)

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is

based upon work supported by the National Science Foundation under Grant No. DMS-8210950,

Mod. 1.
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n

Although this is a linear program, it contains 2 nr constraints. Hence (2) is

practically intractable even when n is as small as 20.

In this paper, we give a linear program formulation with only m constraints. The

linear program (see (5)) is very similar to and no more difficult than the following

formulation for finding a feasible point in F.

max y subject to aTy -y bi  i = 1,...,m
(y,'r)

Hence the problem can be solved by efficient algorithms such as Dantzig's simplex method

or, tf the problem is large and sparse, Mangasarian's SOR method [6). This result also

shows that theoretically the problem is polynomial-time solvable [3], (4]. It is

interesting to note that finding the smallest ball containing F is much more difficult.

Depending on the norm used, it can be NP-complete (7], which means that if one can solve it

in polynomial time then he can solve also in polynomial time hundreds of those intractable

problems such as traveling salesman problem (2] or non-convex linear complementarity

problems [1]. These problems are considered intractable because as it is widely believed,

but not proven, that no polynomial-time algorithms exist for solving them.

2. LP Formulation

The problem can be written as

(3) maximize y subject to B(y,y,p) c F
(y,Y)

For i = 1,2,...,m, define the function gi(y,Y;p) by

(4) gi(y,Y;p) :- max aTx - bi subject to x e B(y,y;p) .

x

It is easy to see that the constraint in (3) can be replaced by m constraints

g1 (yy;p) K 0 i =  1,2,...,m.

Lemma 1: B(y,Y;p) c F if and only if gi(y,y;p) , 0 for i = 1,2,...,m.

Proof: B(y,Y;p) F ,

iff

-2-
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Ta1 x - bi  0 for all x e B(y,Y;p) for i =1,2,...,m

iff

(max Taix - bi  0 subject to x e B(y,Y;p)) for i =12,...,m
X

x

iff

gi(yY;p) 0 for i 1,2,...,m
El

Lemma 2. For l p 4 -, gi(y,y;p) = aT - bi + ral q  where 1
lqp q

qr

Proof: For all x e B(y,y;p), Ix-yj C y and

aTx - bi  aTy- bi + aT(x-y)

ii

a - bi + aiiq * ix-ylp 4 aiy - bi + Y'Ja.i q

Hence gi(Y,;;p) K aTy - bi + yla I q . On the other hand, it is well-known that

equalities hold for some x e B(y,y;p). Hence gi(y,y;p) = aiy - bi + r.Jai j. To make

the paper self-contained, we shall give the definition of x. Let aij denote the j-th

component of ai , define

(+1 if aij 0

E 
1)

C. = j -- 1 2, . ,

3 -I if a.i < 0

Case p - , q = . x := y + yz where zj= , j = 1,...,n.

n n

So aT(xy) = y [ a = "y ). aijI = Y-'ai •.,
j=1 j=1

Case p - 1, q ". x :- y + rCkek where k is an index that

fa i" J_ aik I and ek  is the k-th unit vector.

Case 1 < p < . x :y y + p z where zj = i
q - 1

pi :

i~-)p /p iq1/p
So Izfp = (E Ja ij(q'ipj / = (E Ia ij since (q-i) * p = q, and thereby,

-3-
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Tx ~ Y *l I a- Jq-1 Y 1 q)a I- = Ea ( 1/p

p p

= Y (EIa. q)1/q =y * a.1
1) 1) q

It follows that (3) is equivalent to

(5) maximize y subject to a T Y + Y*Ja I q bi, i =1,2,.,m

We summarize the results in the followaing:

Theorem 1. For any given ai, bi, i =1,..m

(i) The linear program (5) is feasible.

(ii) Assume that the linear program (5) is bounded, and that (y*,Y*) is an

optimal solution with Y < +.Then

*(a) Y* < 0 if and only if F 0

(b) Y= 0 if and only if F 0 0 but F has empty interior.

(c) 'Y > 0 if and only if F0 ' and B(y*,Y*;p) is an XP-ball contained

in F with the largest radius.

Proof. Since (5) is equivalent to (3) by Lemma 1, 2. The theorem follows by the following

* observations.

* (i) (0,-K) is feasible for K sufficiently large.

(ii) (y,O) is feasible for all y e F.

(iii) F has non-empty interior if and only if F contains a ball B(y,y;p) with

Y > 0.

Remarks (i) If Y =+ then F has unbounded interior. But the reverse is not true.

For example, let

F = [(xl,x2)Ix - X ( 1, -xi + x 2<0O

The same example also shows that y* is not unique.

-4-



(ii) Given y e F, the largest ball contained in F and centered at y can be

found by solving

max Y s.t. y*fa I < bi - a i = I ... ,m
ij q b

which can be solved explicitly, namely,

T

(6) 
Y = bian y

3. General Norms

From the derivation of (5) in the previous section, it is clear that the results can

be generalized to other norms. That is, find a largest ball B(y,y) = {x I Jx-yJ C y}

in F is equivalent to

(7) max Y s.t. aiy+ Y'la_I Sb i, i 1,...,m
(y,)

where Jail* is the dual norm of I , namely

(8) Jail= max afz s.t. Izi ' 1

Of course, to make (7) useful computationally, we need to be able to solve (8), as in

Section 2. For example, if IzI := (zTAz)l / 2  where A is a symmetric positive definite

matrix, then by Kuhn-Tucker Theorem (5] we have

• T T
la I max a z s.t. z Az 1 1

z

(9)
T -1 1/2

= (a.A a.)1 1 -

Note that in this case, a "ball" is in fact an ellipsoid. Hence one can find the largest

ellipsoid (with a given shape defined by A) in F by solving a linear program. When the

center is fixed, the largest ellipsoid can easily be found by (6) in which JaiIq is

replaced by (a AP1 ai ) ./2.

t_• %A
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